Direct electrochemistry of redox proteins or enzymes at various film electrodes and their possible applications in monitoring some pollutants*

نویسنده

  • Naifei Hu
چکیده

Water-insoluble films modified on the surface of solid electrodes may provide a unique microenvironment for electron transfer of some redox proteins or enzymes. The film materials can be two-tail surfactants, or composites of polyion-surfactant or clay-surfactant. Both surfactant and composite films cast on surface of electrodes are self-assembled into an ordered multibilayer structure, which is very similar to the bilayer structure of biological membrane. Amphiphilic polymers can also be used for making films. Incorporated heme proteins such as myoglobin (Mb), hemoglobin (Hb), or horseradish peroxidase (HRP) in these films demonstrated reversible voltammetry. Studies of direct electrochemistry of these proteins in various films by our group are reviewed in this paper. The protein films may provide a good model for study of electron transfer process in biological systems. The electrocatalytic properties of the protein films may also be applied to monitor some pollutant substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ELECTROCHEMICAL BEHAVIOR OF GC, Pt AND Au ELECTRODES MODIFIED WITH THIN FILM OF COBALT HEXACYANOFERRATE

0A thin film of cobalt hexacyanoferrate (CoHCF), an analogue of mixed-valence Prussian blue, was deposited electrochemically on the glassy carbon, platinum and gold electrode surfaces in 0.5M KC1 solution. The electrochemical behavior of these modified electrodes show three couples of redox peaks by CV in a supporting electrolyte solution of 0.5M NaCl, whereas for Au modified electrode only ...

متن کامل

Direct electrochemistry of redox enzymes as a tool for mechanistic studies.

This review regards the use of dynamic electrochemistry to study the mechanism of redox enzymes, with exclusive emphasis on the configuration where the protein is adsorbed onto an electrode and electron tranfer is direct. We still often come across the statement these days that redox enzymes are too large and too fragile to interact directly with a metallic electrode without being at least part...

متن کامل

The Principles and Recent Applications of Bioelectrocatalysis

Bioelectrocatalysis is a phenomenon concerned with biological catalysts, which accelerate the electrochemical reactions. Bioelectrocatalysis has been widely explored by the research community in various directions. Enzymes can catalyze different chemical reactions in living organisms by enzymes as the most important biological catalysts. These enzymatic biocatalysts are commercially available a...

متن کامل

Redox-Active Metal-Organic Nanostructure Polymers and Their Remarkable Electrochemical Behavior

A number of redox-active coordination polymers (CPs) or metal- organic frameworks (MOFs) have been successfully synthesized using transition metals and bridging ligands. This article aims to deal with gathering the aforementioned disperse issues regarding the electroactive CPs. It also goes towards illustrating the effects of various factors on the electrochemical behavior of CPs including...

متن کامل

Protein Film Infrared Electrochemistry Demonstrated for Study of H2 Oxidation by a [NiFe] Hydrogenase

Understanding the chemistry of redox proteins demands methods that provide precise control over redox centers within the protein. The technique of protein film electrochemistry, in which a protein is immobilized on an electrode surface such that the electrode replaces physiological electron donors or acceptors, has provided functional insight into the redox reactions of a range of different pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002